(1) State the Substitution theorem (for integration) and use it to evaluate the integral $\int_{1}^{4} \frac{\cos(\sqrt{t})}{\sqrt{t}} dt$. (5 marks)

Statement: [1] Let $J := [\alpha, \beta]$ be an interval and $\phi : J \to \mathbb{R}$ have a continuous derivative on J. If $f : I \to \mathbb{R}$ is continuous on interval I containing $\phi(J)$, then

$$\int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt = \int_{\phi(\alpha)}^{\phi(\beta)} f(x)dx.$$

Let $f(x) = 2 \cos x$ and let $\phi(t) = \sqrt{t}$. Then f and ϕ are real valued continuous functions on \mathbb{R} , in particular on [1,4]. Also ϕ has a continuous derivative on [1,4]. Note that [1,4] contains $\phi([1,4])$ and $\phi'(t) = \frac{1}{2\sqrt{t}}$. Hence by the substitution theorem stated above,

$$\int_{1}^{4} \frac{\cos(\sqrt{t})}{\sqrt{t}} dt = \int_{\phi(1)}^{\phi(4)} 2\cos x dx$$
$$= 2 \int_{1}^{2} \cos x dx$$
$$= 2\sin(2) - 2\sin(1).$$

Answer: $2(\sin(2) - \sin(1))$

(2) Let $f : [1,2] \to \mathbb{R}$ be the function defined by f(x) = x for $x \in \mathbb{Q} \cap [1,2]$ and f(x) = 0 for $x \in [1,2] - \mathbb{Q}$. Calculate the upper and lower Riemann integrals U(f) and L(f) of f. If f integrable? (6 marks)

Recall that $U(f) = \inf U(P, f)$ and $L(f) = \sup L(P, f)$ where the infimum and supremum are taken over all the partitions of [1, 2] respectively and for every partition $P = \{0 = x_0, x_1, \dots, x_n = 1\}$

$$U(P, f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) \text{ where } M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$
$$L(P, f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}) \text{ where } m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$$

By the definition of f, for every interval $(x_{i_1}, x_i) \subset [1, 2]$, $m_i = 0$. Thus L(f) = 0. Also, $U(f) = \frac{3}{2}$.

However, f is Riemann integrable if and only if U(f) = L(f). Hence f is not Riemann integrable.

(3) Let $f : \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function on \mathbb{R} . For $n \in \mathbb{N}$, define $f_n(x) = f(x + \frac{1}{n})$ for every $x \in \mathbb{R}$. Does the sequence of functions (f_n) converge uniformly on \mathbb{R} ? (6 marks)

Given that f is uniformly continuous. Let $\epsilon > 0$ be given. Then $\forall x \in \mathbb{R}$, there exists a $\delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$. Choose a large positive natural number N such that $N > \delta^{-1}$. For all $n \ge N$,

$$|x + \frac{1}{n} - x| \le 1/N < \delta \implies |f(x + \frac{1}{n}) - f(x)| < \epsilon$$

that is, $|x + \frac{1}{n} - x| \le 1/N < \delta \implies |f_n(x) - f(x)| < \epsilon$

Thus for all $n \ge N$, $|f_n(x) - x| < \epsilon$, $\forall x \in \mathbb{R}$. Hence the uniform convergence.

(4) If the partial sums s_n of the series $\sum_{n=1}^{\infty} a_n$ are bounded, then show that the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges, and $\sum_{n=1}^{\infty} \frac{a_n}{n} = \sum_{n=1}^{\infty} \frac{s_n}{n(n+1)}$. (6 marks)

Following the proof Dirchlet's test Given that the partial sums $s_n = \sum_{k=1}^n a_k$ are bounded, that is, there exists a positive number M such that $|s_n| \leq M$. Let $s_0 = 0$. For every $\epsilon > 0$, choose large positive $N_0 > M\epsilon^{-1}$. Then $\frac{1}{n} < \epsilon$ for all $n \geq N_0$. Hence

$$\sum_{k=1}^{n} \frac{a_k}{k} = \sum_{k=1}^{n} \frac{1}{k} (s_k - s_{k-1})$$
$$= \sum_{k=1}^{n} \frac{s_k}{k} - \sum_{k=0}^{n-1} \frac{s_k}{k+1}$$
$$= \frac{s_n}{n} + \sum_{k=1}^{n-1} s_k (\frac{1}{k} - \frac{1}{k+1}) \quad (\text{since } s_0 = 0)$$
$$= \frac{s_n}{n} + \sum_{k=1}^{n-1} \frac{s_k}{k(k+1)}$$

Now since the partial sums are bounded we have $|\sum_{k=1}^{n} \frac{a_k}{k}| \leq M + M(1 - \frac{1}{n}) < 2M$, that is the partial sums of the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ is a bounded sequence. Thus the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges. In other words,

$$\left|\sum_{k=1}^{n} \frac{a_k}{k} - \sum_{k=1}^{n} \frac{s_k}{k(k+1)}\right| = \left|\frac{s_n}{n} - \frac{s_n}{n(n+1)}\right| = \left|\frac{s_n}{n+1}\right|$$
$$\leq M\frac{\epsilon}{M} = \epsilon \ \forall n \ge N_0 - 1$$

Thus the series $\sum_{n=1}^{\infty} \frac{a_n}{n+1}$ converges to $\sum_{n=1}^{\infty} \frac{s_n}{n(n+1)}$.

(5) Let $f_n(x) = Arctan(nx)$. Describe the pointwise limit function f of this sequence. Show that f_n converges to f uniformly on $(0, \infty)$. (6 marks)

By the properties of Arctan: $Arctan(\frac{1}{x}) = \frac{\pi}{2} - arctan(x)$, for positive x, we have $|Arctan(nx) - \frac{\pi}{2}| = |\frac{\pi}{2} - Arctan(nx)| = |Arctan(\frac{1}{nx})|$. Since Arctan is monotonically increasing function, we have $|Arctan(nx) - \frac{\pi}{2}| = Arctan(\frac{1}{nx}) \to 0$. Thus $\lim_{n\to\infty} f_n(x) = \frac{\pi}{2}$. Note that the convergence is not depending on $x \in (0, \infty)$. Hence the uniform convergence on $(0, \infty)$.

Also for x < 0, we have $\arctan \frac{1}{x} = -\frac{\pi}{2} - \arctan(x)$. Hence for x < 0, $\lim_{n \to \infty} f_n(x) = -\frac{\pi}{2}$.

(6) If a and b are positive numbers, then prove that the series $\sum_{n=1}^{\infty} (an+b)^{-p}$ converges if p > 1 and diverges if $p \le 1$. (6 marks)

For $p \leq 0$ if the series converged, then $\lim_{n\to\infty} (an+b)^{-p} = 0$ which is a contradiction. Let p > 0. Note that the partial sums of the series $\sum_{n=1}^{\infty} (an+b)^{-p}$ is monotonically increasing. Hence enough to prove that the partial sums are bounded. Let $a_n = (an+b)^p$

For
$$n < 2^k$$
, $s_n = \sum_{k=1}^n \frac{1}{(an+b)^p}$
 $\leq a_1 + (a_2 + a_3) + \dots + (a_{2^k} + \dots + a_{2^{k+1}-1})$
 $\leq a_1 + 2a_2 + \dots + 2^k a_{2^k}$
Now $2^j a_j = \frac{2^{j(1-p)}}{(a+\frac{b}{2^j})^p} < \frac{2^{k(1-p)}}{a^p} \implies s_n \leq a^{-p} \sum_{j=0}^k 2^{-k(p-1)}$

Since $\sum 2^{-n(p-1)}$ converges if and only if p > 1, the convergence of the series $\sum_{n} (an+b)^{-p}$ follows for p > 1. And for $p \leq 1$, by comparison test, the divergence follows.

References

- [1] Bartle, R. G. and Sherbert, D. R., "Introduction to Real analysis", 2007
- [2] Rudin, W., "Principles of Mathematical Analysis", 1976.