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(1) State the Substitution theorem (for integration) and use it to evaluate

the integral
∫ 4

1
cos(
√
t)√

t
dt.

(5 marks)

Statement: [1] Let J := [α, β] be an interval and φ : J → R have a continuous derivative
on J . If f : I → R is continuous on interval I containing φ(J), then∫ β

α

f(φ(t))φ′(t)dt =

∫ φ(β)

φ(α)

f(x)dx.

Let f(x) = 2 cos x and let φ(t) =
√
t. Then f and φ are real valued continous functions

on R, in particular on [1, 4]. Also φ has a continuous derivative on [1, 4]. Note that [1, 4]
contains φ([1, 4]) and φ′(t) = 1

2
√
t
. Hence by the substitution theorem stated above,∫ 4

1

cos(
√
t)√

t
dt =

∫ φ(4)

φ(1)

2 cosxdx

= 2

∫ 2

1

cosxdx

= 2 sin(2)− 2 sin(1).

Answer: 2(sin(2)− sin(1))

(2) Let f : [1, 2] → R be the function defined by f(x) = x for x ∈ Q ∩ [1, 2] and
f(x) = 0 for x ∈ [1, 2]−Q. Calculate the upper and lower Riemann integrals
U(f) and L(f) of f . If f integrable?
(6 marks)

Recall that U(f) = inf U(P, f) and L(f) = supL(P, f) where the infimum and supremum
are taken over all the partitions of [1, 2] respectively and for every partition P = {0 =
x0, x1, · · · , xn = 1}

U(P, f) =
n∑
i=1

Mi(xi − xi−1) where Mi = sup
xi−1≤x≤xi

f(x)

L(P, f) =
n∑
i=1

mi(xi − xi−1) where mi = inf
xi−1≤x≤xi

f(x)

By the definition of f , for every interval (xi1 , xi) ⊂ [1, 2], mi = 0. Thus L(f) = 0. Also,
U(f) = 3

2
.

However, f is Riemann integrable if and only if U(f) = L(f). Hence f is not Riemann
integrable.
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(3) Let f : R→ R be a uniformly continuous function on R. For n ∈ N, define
fn(x) = f(x + 1

n
) for every x ∈ R. Does the sequence of functions (fn)

converge uniformly on R?
(6 marks)

Given that f is uniformly continuous. Let ε > 0 be given.Then ∀x ∈ R, there exists a
δ > 0 such that |x − y| < δ =⇒ |f(x) − f(y)| < ε. Choose a large positive natural
number N such that N > δ−1. For all n ≥ N,

|x+
1

n
− x| ≤ 1/N < δ =⇒ |f(x+

1

n
)− f(x)| < ε

that is, |x+
1

n
− x| ≤ 1/N < δ =⇒ |fn(x)− f(x)| < ε

Thus for all n ≥ N, |fn(x)− x| < ε, ∀x ∈ R. Hence the uniform convergence.

(4) If the partial sums sn of the series
∑∞

n=1 an are bounded, then show that
the series

∑∞
n=1

an
n

converges, and
∑∞

n=1
an
n

=
∑∞

n=1
sn

n(n+1)
.

(6 marks)

Following the proof Dirchlet’s test Given that the partial sums sn =
∑n

k=1 ak are
bounded, that is, there exists a positive number M such that |sn| ≤M . Let s0 = 0.
For every ε > 0, choose large positive N0 > Mε−1. Then 1

n
< ε for all n ≥ N0. Hence

n∑
k=1

ak
k

=
n∑
k=1

1

k
(sk − sk−1)

=
n∑
k=1

sk
k
−

n−1∑
k=0

sk
k + 1

=
sn
n

+
n−1∑
k=1

sk
(1

k
− 1

k + 1

)
(since s0 = 0)

=
sn
n

+
n−1∑
k=1

sk
k(k + 1)

Now since the partial sums are bounded we have |
∑n

k=1
ak
k
| ≤M +M(1− 1

n
) < 2M , that

is the partial sums of the series
∑∞

n=1
an
n

is a bounded sequence. Thus the series
∑∞

n=1
an
n

converges. In other words,∣∣ n∑
k=1

ak
k
−

n∑
k=1

sk
k(k + 1)

∣∣ =
∣∣sn
n
− sn
n(n+ 1)

∣∣ =
∣∣ sn
n+ 1

∣∣
≤ M

ε

M
= ε ∀n ≥ N0 − 1

Thus the series
∑∞

n=1
an
n+1

converges to
∑∞

n=1
sn

n(n+1)
.
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(5) Let fn(x) = Arctan(nx). Describe the pointwise limit function f of this
sequence. Show that fn converges to f uniformly on (0,∞).
(6 marks)

By the properties of Arctan: Arctan( 1
x
) = π

2
− arctan(x), for positive x, we have

|Arctan(nx) − π
2
| = |π

2
− Arctan(nx)| = |Arctan( 1

nx
)|. Since Arctan is monotonically

increasing funtion, we have |Arctan(nx)− π
2
| = Arctan( 1

nx
)→ 0. Thus limn→∞ fn(x) = π

2
.

Note that the convergence is not depending on x ∈ (0,∞). Hence the uniform conver-
gence on (0,∞).
Also for x < 0, we have arctan 1

x
= −π

2
−arctan(x). Hence for x < 0, limn→∞fn(x) = −π

2
.

(6) If a and b are positive numbers, then prove that the series
∑∞

n=1(an+ b)−p

converges if p > 1 and diverges if p ≤ 1.
(6 marks)

For p ≤ 0 if the series converged, then limn→∞(an+ b)−p = 0 which is a contradiction.
Let p > 0. Note that the partial sums of the series

∑∞
n=1(an + b)−p is monotonically

increasing. Hence enough to prove that the partial sums are bounded. Let an = (an+ b)p

For n < 2k, sn =
n∑
k=1

1

(an+ b)p

≤ a1 + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + · · · 2ka2k

Now 2jaj =
2j(1−p)

(a+ b
2j

)p
<

2k(1−p)

ap
=⇒ sn ≤ a−p

k∑
j=0

2−k(p−1)

Since
∑

2−n(p−1) converges if and only if p > 1, the convergence of the series
∑

n(an+b)−p

follows for p > 1. And for p ≤ 1, by comparison test, the divergence follows.
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